Course Overview

Contact Information

Professor: Jonathan A. Jensen, Ph.D.
Email: jajensen@email.unc.edu
Office Phone: 919-962-0959
Class Time: 8:45 – 10:00 a.m. MW
Class Location: Fetzer 104
Office: Woollen 308
Office Hours: 10:00 a.m. -11:30 a.m. MW (Appointments should be arranged via email)

Prerequisite

STOR 151 or 155 (Grade of B or better)

NOTE: EXSS 327 assumes knowledge of descriptive statistics, basic probability concepts, graphical displays such as histograms and scatter plots, and statistical inference such as confidence intervals and hypothesis testing (i.e., Type I Error, Type II Error, Power)

Course Description

“Predictive Analytics in Sport” is designed to provide students with an introduction to predictive analytics utilizing linear regression-based modeling approaches to analyze sport-related data. As this is designated as a CURE (Course-based Undergraduate Research Experiences) course, students will learn the iterative process of model building through trial and error and by working with other students on hands-on problems and projects. At the conclusion of this course, students will be able to collect and analyze sport-related data using predictive analytics, whether the dependent variable is continuous (i.e., attendance) or binary (i.e., a win or a loss) in nature. Several processes that students will gain experience in include the decision of which type of model is appropriate given the data to be analyzed or research question to be answered, the selection of appropriate independent variables based on knowledge of the sport industry, theory, or the literature, interpretation of coefficients and measures of model fit, and the ability to communicate advanced statistical information to a lay audience.
Course Goals and Key Learning Objectives

This course is designed to provide students with the ability to develop and apply concepts of predictive analytics, such as building multivariate linear regression models. Upon successful completion of this course, active course participants should be expected to:

1) an awareness of both the recent trend of utilizing analytics in the sport industry, as well as of the key issues facing the continued adoption of advanced analytics within the industry
2) an understanding of the basic concepts that underlie analytics, and an ability to apply these concepts to the analysis of issues within the sport industry.
3) an understanding of how analytics may better inform managerial decision-making within the sport industry

Primary Content of Course – Statistical Concepts

- Correlation and collinearity
- Bivariate regression analysis
- Multiple regression analysis
- Hierarchical regression analysis
- Logistic regression analysis

Course Technology

Sakai

You need to check Sakai daily to see announcements notifying you of important class news (e.g., readings, required assignments, updates on required assignments, etc.). You are responsible for the work and/or information (e.g., power point slides, articles, etc.) posted to Sakai. Please do not use the digital drop box to submit any work unless specifically instructed to do so. I will make extensive use of the Poll Everywhere software during classtime, so you should bookmark the site www.poll Everywhere.com/jajensen on your device to participate in polls during class.

Student Email Accounts

From time to time it may be necessary for me to provide important class announcements via email. All email communications from me will be sent to your school email address. Please be sure to check your school account daily, as emails will not be sent to personal accounts.

Statistical Package

In in-class demonstrations I will be using SPSS, which is a very user-friendly statistical software package and works well for cross-sectional regression modeling. If you are already proficient in another statistical package such as R, SAS, or Stata, you are welcome to use it for your assignments. My intention is to give you the opportunity to experience statistical computing as it is done in the industry, and to give you some experience that will be useful for future coursework and the work force. However, it is your responsibility as part of the course to become proficient in a statistical package, and there are a number of resources available to you throughout campus. You can access SPSS on campus at the Odum Institute as well as on your own machine through UNC’s Virtual Lab. For those interested in learning R, we will be welcoming a professor from the statistics department who will provide a tutorial during class, and the R Open Labs at the Odum Institute on campus are also recommended.
Text and Course Grading

Required Textbook and Other Readings

Other readings (e.g., academic journal articles, articles, case studies, etc.) will be posted on Sakai. Hard copies will not be handed out during class and it is expected that any reading posted to Sakai will be read.

Grading

Your course grade is determined as follows:

<table>
<thead>
<tr>
<th></th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal Article Presentations</td>
<td>50</td>
</tr>
<tr>
<td>Problem Sets</td>
<td>75</td>
</tr>
<tr>
<td>Group Project Progress Reports</td>
<td>100</td>
</tr>
<tr>
<td>Group Project Presentation</td>
<td>100</td>
</tr>
<tr>
<td>Class Participation (including in-class assignments)</td>
<td>25</td>
</tr>
</tbody>
</table>

*Attendance (see the course policies: attendance policy)

1. **Presentation of Journal Article:** Students will pair up and present to the class a short overview of an article (of their choice) applying regression-based approaches to sport data from either the finals of the research papers competition at the [MIT Sloan Sports Analytics Conference](https://mitsloan.mit.edu/sports-analytics) or academic journals such as *Journal of Sports Analytics*, *Journal of Quantitative Analysis in Sports*, or *Journal of Sports Economics*. A helpful guide to understanding and interpreting a scientific paper is linked [here](#). The presentation should be no more than 10 minutes and should outline the key aspects of the paper: its purpose, its relationship to the existing literature, its approach, and its findings. Students should also comment on what they think the managerial implications of the paper might be (if any). The presentations will occur throughout the course at the beginning of class. Presentation days will be assigned during the first day of class.

2. **Problem Sets:** Multiple problem sets will be distributed during the semester. These assignments will be given to you at least 5 to 7 days before their due date. My expectations and requirements will be explicitly stated in each assignment. These assignments must be turned in by their deadline or a 20 percentage-point penalty will be assessed for each day they are late.

3. **Analytics Group Project:** In teams of four, students will be required to initiate and complete a sport analytics project of their choosing. The project will involve the development of each group’s own predictive analytics model analyzing data utilizing the university’s subscription to the [Sports Market Analytics](https://sportsmarketanalytics.com) website or from another source, such as Rod Fort’s Sports Business database. The final product will demonstrate competency in predictive analytics as applied to an important issue in either intercollegiate or professional sport. The final deliverables will be a report in PowerPoint form, as well as an in-class presentation during the last week of class that will be attended and evaluated by the UNC Athletic Department’s Director of Business Intelligence Andrea Johnston. After receiving feedback from Andrea and the professor, each team will then share their work as a poster at the QEP Research and Making Expo held at the Great Hall of the Carolina Student Union the last week of class.
Each team will also be responsible for submitting a progress report in line with the following general schedule to ensure that all teams are able to successfully complete their project.

Progress Report No. 1 (Weeks 1-4): Previous literature and idea generation
Progress Report No. 2 (Weeks 5-8): Data collection and preliminary analysis
Progress Report No. 3 (Weeks 9-11): Completion of data analysis
Progress Report No. 4 (Weeks 12-13): Writing report and creating presentation
Progress Report No. 5 (Weeks 14-15): Presentations

Graduate Research Consultants (GRCs)
In this research-exposure course, you will be working with two Graduate Research Consultants (GRCs) who will assist you in your research project. The GRC program is sponsored by the Office for Undergraduate Research (our.unc.edu). I encourage you to visit this website to see other ways that you might engage in research, scholarship and creative performance while you are at Carolina.

Both GRCs are graduate students at UNC-Chapel Hill and have extensive statistical knowledge to assist you in this project. It is important to note that GRCs do not grade assignments, their sole purpose is to assist you in your group projects, every step of the way. They will be in attendance when you present updates on your projects and will be available during classtime to assist in questions related to methods, statistical issues, model building problems, and helping to communicate your findings.

4. Class Participation (including in-class assignments): Particularly given that this course is designated as a CURE (Course-based Undergraduate Research Experiences) course, hands-on participation by all class members is required. You should be prepared to provide thoughtful comments in class. Being a thoughtful, insightful and analytical contributor is a valuable trait in the sport industry. Students will often be called on in class and are expected to be ready to make a relevant and thoughtful response. In addition, students are encouraged to show initiative in adding relevant and thoughtful contributions to the current class discussion.

Grade Scale

Grades in the course will be assigned according to the grade scale below:

<table>
<thead>
<tr>
<th>A Excellent</th>
<th>B Very Good</th>
<th>C Good</th>
<th>D Poor</th>
<th>F Unacceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceptional achievement combined with extraordinary insight into and command of course material.</td>
<td>Superior achievement that exceeds the norm expectations of a college student.</td>
<td>Competence; Achieving standard performance expected of a college student</td>
<td>Minimal achievement allowable for course credit, passing but not satisfactory</td>
<td>Performance fails to achieve minimal expectations for college students</td>
</tr>
<tr>
<td>A 93+ 324-350</td>
<td>B+ 87-89 303-312</td>
<td>C+ 77-79 268-277</td>
<td>D+ 67-69 233-242</td>
<td>Below 60</td>
</tr>
</tbody>
</table>
Academic Integrity

Academic and personal misconduct by students in this class are defined and dealt with according to the UNC Honor Code. Students with questions about any activity that may be interpreted as academic dishonesty should see their instructor before the assignment is due. Students may be videotaped by instructors through the use of classroom or handheld monitoring devices during any exam or graded assignments taken in class. Please see the following link to access related information on UNC’s Honor Code (http://honor.unc.edu/).

Attendance Policy

In this course, you are expected to actively engage in the learning process. This means that you must be prepared for class by doing the readings, and be willing to share your ideas and questions with the class. Because you will learn not only from the lectures and readings, but from the class discussion, it is imperative that you attend every class. There are no free passes; the only excused absences are those allowed by the University, provided that you contact the professor prior to your absence. With an excused absence, it is your responsibility to get notes and make up any missed in-class work or assignments. Attendance will be taken at every class meeting, and any absence will impact your total attendance and class participation grade.

Accommodations

The University of North Carolina at Chapel Hill facilitates the implementation of reasonable accommodations, including resources and services, for students with disabilities, chronic medical conditions, a temporary disability or pregnancy complications resulting in difficulties with accessing learning opportunities. All accommodations are coordinated through the Accessibility Resources and Service Office. Please contact ARS immediately through their website http://accessibility.unc.edu, call 919-962-8300 or email accessibility@unc.edu.

Course Modifications

In certain instances, it may be necessary to make changes to the course. The professor reserves the right to make changes to the syllabus, including project due dates and test dates, when unforeseen circumstances occur. Any changes will be announced as early as possible to that students can adjust their schedule. Updates, announcements or changes will either be posted to Sakai and/or sent via UNC email.

Communication Policy

Feel free to communicate with me at any time via e-mail at jajensen@email.unc.edu. Typically, I respond to email as soon as possible and usually check email in the morning during weekdays.

Practicing Professionalism

This course helps motivate students to develop their professional marketing skills. It is imperative that students begin learning professionalism now, as opposed to waiting until they enter the workforce. In the spirit of promoting a professional ethic, we will not tolerate arriving late, leaving early, surfing the internet, talking to classmates, sleeping, talking on cell phones, texting or use of social media. Tobacco use of any kind in the classroom is prohibited. Beyond these basic rules of professionalism, we hope you can work at being attentive and try your hardest to keep yourself focused on what is going on in class.
Tentative Course Schedule

(This schedule is tentative and may change based upon guest speakers or other circumstances)

<table>
<thead>
<tr>
<th>Week</th>
<th>Statistical Concept to Be Discussed</th>
<th>Reading / Class Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/21 Objectives of Course, Class Policies</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8/26 Class Introductions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/28 In-Class R Tutorial by STOR Assistant Professor Mario Giacomazzo</td>
<td>Scorecasting: Introduction, Whistle Swallowing; Sport Business Analytics (SBA) Chapter 1</td>
</tr>
<tr>
<td>3</td>
<td>9/2 Labor Day (No Class)</td>
<td>SBA Chapter 2</td>
</tr>
<tr>
<td></td>
<td>9/4 Review of Hypothesis Testing, Type I/II Error, Statistical Inference</td>
<td>Scorecasting: Go for It; Statistical Concepts Ch. 10</td>
</tr>
<tr>
<td>4</td>
<td>9/9 Correlation / Collinearity</td>
<td>Scorecasting: How Competitive Are Competitive Sports? SBA Chapter 3; Statistical Concepts Ch. 17</td>
</tr>
<tr>
<td></td>
<td>9/11 Correlation / Collinearity Continued</td>
<td>Scorecasting: Tiger Woods is Human; SBA Chap. 4</td>
</tr>
<tr>
<td>5</td>
<td>9/16 In-Class Exercise: College Football Attendance Data</td>
<td>Scorecasting: Offense Wins Championships, Too; Problem Set No. 1 Due</td>
</tr>
<tr>
<td></td>
<td>9/18 Bivariate Regression</td>
<td>Scorecasting: The Value of a Blocked Shot; SBA Chapter 5; Progress Report No. 1 Due</td>
</tr>
<tr>
<td>6</td>
<td>9/23 Guest Speaker: Boston Celtics Sr. Dir. Of Analytics Richie Smith</td>
<td>Scorecasting: Rounding First; Statistical Concepts Ch. 18</td>
</tr>
<tr>
<td></td>
<td>9/25 Multiple Regression Introduction</td>
<td>Scorecasting: Thanks, Mr. Rooney; SBA Chapter 6</td>
</tr>
<tr>
<td>7</td>
<td>9/30 Multiple Regression Continued</td>
<td>Scorecasting: Comforts of Home; Problem Set No. 2 Due</td>
</tr>
<tr>
<td></td>
<td>10/2 In-Class Exercise: Professional Baseball Promotions Data</td>
<td>Scorecasting: So, What Is Driving the Home Court Advantage; SBA Chapter 7</td>
</tr>
<tr>
<td>8</td>
<td>10/7</td>
<td>Scorecasting: There’s No I in Team</td>
</tr>
<tr>
<td></td>
<td>10/9 Multiple Regression Continued</td>
<td>Scorecasting: Off the Chart; SBA Chapter 8; Progress Report No. 2 Due</td>
</tr>
<tr>
<td>9</td>
<td>10/14 Guest Speaker: Hurricanes Business Intelligence Analyst Alston Meadows</td>
<td>Scorecasting: How a Coin Toss Trumps All; SBA Chapter 9</td>
</tr>
<tr>
<td></td>
<td>10/16 Interactions Introduction</td>
<td>Scorecasting: What Isn’t in the Mitchell Report</td>
</tr>
<tr>
<td>10</td>
<td>10/21 Two Time Point Designs</td>
<td>Scorecasting: Do Athletes Really Melt When Iced? SBA Chapter 10; Statistical Concepts Ch. 19</td>
</tr>
<tr>
<td></td>
<td>10/23 Logistic Regression Introduction</td>
<td>Scorecasting: The Myth of the Hot Hand;</td>
</tr>
<tr>
<td>11</td>
<td>10/28 Logistic Regression Continued</td>
<td>Scorecasting: Damned Statistics; SBA Chapter 11; Problem Set No. 3 Due</td>
</tr>
<tr>
<td></td>
<td>10/30 In-Class Exercise: Won/Loss Data</td>
<td>Scorecasting: Are the Chicago Cubs Cursed?; Progress Report No. 3 Due</td>
</tr>
<tr>
<td>12</td>
<td>11/4 Probit Models</td>
<td>SBA Chapter 12</td>
</tr>
<tr>
<td></td>
<td>11/6 Overview of Fixed and Random Effects Models</td>
<td>SBA Chapter 13</td>
</tr>
<tr>
<td>13</td>
<td>11/11 In-Class Group Project Work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/13 In-Class Group Project Work</td>
<td>Progress Report No. 4 Due</td>
</tr>
<tr>
<td>14</td>
<td>11/18 In-Class Group Project Work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/20 Group Project Presentations</td>
<td>Progress Report No. 5 Due</td>
</tr>
<tr>
<td>15</td>
<td>11/25 Group Project Presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/27 Thanksgiving (No Class)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12/2 Apply Input on Presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/3 QEP EXPO (3-5 p.m., Blue Zone)</td>
<td></td>
</tr>
</tbody>
</table>

Exam Days
Below are some additional courses at UNC that you might consider taking after completion of this course:

- STOR 320 - Introduction to Data Science
- STOR 390 - Sports Analytics
- STOR 455 - Statistical Methods
- ECON 485 - Economics of Sports

In addition, should you wish to learn more about predictive analytics in sport above and beyond this course, below are a number of additional resources. In addition to the below books and/or articles, there are a rapidly growing number of websites dedicated to thinking and writing about sports from an analytics perspective. Regardless of your interest in the particular sport, reading each of these sites will challenge you to think analytically about sports. While there are many more, here is a short list of some of the more popular sites:

- Football Outsiders
- Nylon Calculus
- KenCom.com
- Society for Baseball Research (SABR)
- Fan Graphs
- FiveThirtyEight

BASEBALL
BASKETBALL

BUSINESS & ECONOMICS

FANTASY

GOLF

HOCKEY

SOCCER
SPORT SCIENCE

OTHER SPORTS